
JOURNAL OF COMPUTATIONAL PHYSICS 39, 341-363 (1981)

A Diagonal Form of an Implicit
Approximate-Factorization Algorithm

T. H. PULLIAM

Ames Research Center, NASA, Moffet Field, California 94035

D. S. CHAUSSEE

Flow Simulations, Inc., 298 Sunnyvale Avenue, Sunnyvale, California 94084

Received December 5. 1979

A modification of an implicit approximate-factorization finite-difference algorithm applied
to partial differential equations is presented. This algorithm is applied to the two- and three-
dimensional Euler equations in general curvilinear coordinates. The modification transforms
the coupled system of equations into an uncoupled diagonal form that requires less
computational work. For steady-state applications, the resulting diagonal algorithm retains the
stability and accuracy characteristics of the original algorithm. The diagonal algorithm
reduces the storage requirement of the implicit solution process and therefore has an
important effect on the application of implicit finite-difference schemes to vector processors.
Results are presented for realistic two-dimensional transonic flow fields about airfoils.
Computation costs are reduced 24-34%.

1. INTRODUCTION

Efficient means of solving the fluid dynamic equations-for example, the inviscid
Euler equations-are constantly being sought. Various time-accurate methods, both
explicit and implicit, have been proposed. These schemes have been used for unsteady
time-accurate computations and also for time-like relaxation to steady-state solutions.

Implicit finite-difference schemes are attractive because of their stability bounds,
which allow larger time steps to be taken for either a faster time advance of a time-
accurate calculation or as a method to increase convergence rates for steady-state
calculations. Even though explicit schemes have more restrictive stability limitations,
they generally require less computational work per time step than implicit methods.

The major portion of the computational work in an implicit finite-difference
algorithm is contained in the solution of a set of simultaneous equations. When an
implicit algorithm is applied to a system of partial differential equations, one obtains
block matrix-vector equations that are complicated and time-consuming to solve. A
method for uncoupling the solution process,. through a diagonalization of the block-

347
0021.9991/81/020347-17$02.00/O

Copyright ,? 1981 by Academic Press. Inc.
All rights of reproduction in any form reserved.

348 PULLIAMAND CHAUSSEE

matrix structure, is presented. The method is applied to an implicit approximate-
factorization algorithm [1] for the two- and three-dimensional inviscid Euler
equations in general curvilinear coordinates. The accuracy and stability of the
diagonal algorithm are examined and contrasted with the original scheme. The effect
of the diagonal algorithm on the application of implicit schemes to vector computers
is briefly discussed. Finally, results are presented for realisitic two-dimensional tran-
sonic flow fields about airfoils, in which the diagonal algorithm is compared with the
standard implicit algorithm.

2. IMPLICIT ALGORITHM AND DIAGONAL FORMULATION

A. Cartesian Equations

The two-dimensional conservation-law form of the Euler equations cast in
Cartesian coordinates and nondimensional variables are

a,q + a,E + a,F= 0,

where

Density p is scaled to pm (the free-stream density); Cartesian velocities u and u to
c, the free-stream speed of sound); and total energy e is nondimensionalized with
respect to p, CL. Pressure is obtained from the equation of state for a perfect gas,

p = (y - l)[e - +p(u’ + v’)], (2)

where y is the ratio of specific heats.

B. General Curvilinear Coordinates

If general curvilinear coordinate transformations are introduced into the Euler
equations, where the inertial Cartesian momenta are retained as the dependent
variables, the strong conservation-law form is maintained; for example, see Lapidus
[2], Viviand [3], and Vinokur [4]. For general curvilinear coordinate transformations

r = m, Y, t),

rl = r(x, Y, 0, (3)

5 = t.

DIAGONAL APPROXIMATE-FACTORIZATION ALGORITHM 349

Applied to Eq. (l), we have

a,cf + ap!? + a,E = 0, W
PU

-” &= J-’ PUU + LP

L-4 [1 Pvu+&?P ’ (etp)U-t,p
p= J-l

and

The metric terms are

(4b)

(5)

with

C. Standard Solution Algorithm

The implicit approximate-factorization algorithm applied to Eqs. (1) has been
described in detail by Beam and Warming [5]. Steger [6] has applied the algorithm
to the transformed Eqs. (4); details of the equations, the algorithm, and some
numerical calculations can be found in that report. The algorithm can be first- or
second-order accurate in time with first-order being used in the following discussions.
Local time linearization is applied to the nonlinear terms and an approximate
factorization of the two-dimensional implicit operator is used to produce locally one-
dimensional operators.

350 PULLIAM AND CHAUSSEE

An implicit approximate-factorization scheme for Eqs. (4) can be written as

(I + hQP)(Z + /l&p) Aq”” = -At(@‘” + f&En) = ZP, (6)

where Aq^” = 4”” - $” and h = At for first-order accuracy in time.
The Jacobian matrices, A^ and B, are

aorB=

kx
k, + 6 - (y - 2) k,u
k,v-(y- l)k,u

(7)

where 8= k,u + k,v and 4’ = OS(y - l)(u2 + v’), with k = C for A and k = q for ti.
The derivation of Eq. (6) used a local time linearization of the flux vectors, that is,

8” + ’ = 8” + /in@ + ’ - 4”) + o(At2),

~+1=~+l?n(qn+‘-@)+o(At2),
(8)

where A^” = (c%?/~~)” and dn = (@/a@,.
The spatial derivative operators 3, and a, of Eqs. (4) are approximated with

central finite-difference operators 6, and 6, of either second- or fourth-order accuracy
(see [5-71). Here, second-order central differences are used for the left-hand (implicit)
side of Eq. (6) producing block-tridiagonal matrix operators (Z + ZzS,an) and
(Z + h&d”), w tc must be inverted sequentially to obtain A@‘. h’ h

Equation (6) can be used for either time-accurate or steady-state computations.
For steady-state calculations, Aq^” approaches zero asymptotically with the solution
satisfying the right-hand (explicit) side of Eq. (6), which is the exact steady-state
difference equation.

D. Block-Tridiagonal Matrix Solution Process

The solution of the matrix equations is obtained through a block lower-upper
decomposition (LUD) coupled with forward and backward sweeps. The recursion
algorithm for the block-tridiagonal solution process is found in Isaacson and
Keller [8]. A relative measure of the work involved in the algorithm can be obtained
by looking at the operation counts in terms of the total number of multiplies, adds,
and divides. In two-dimensions, the block size is 4 x 4, and for a typical grid point
there are 196 multiplies, 155 adds, and 4 divides. (In three-dimensions the block size
is 5 x 5 and there are 365 multiplies, 325 adds, and 5 divides.) If the work in forming
a” and 8” is added to the operation counts for the inversion algorithm, the total
operation count per grid point for the implicit phase of the integration is 410
multiplies, 326 adds, and 10 divides, a total of 746 operations. The explicit side
requires 72 multiplies, 48 adds, and 4 divides, a total of 124 operations per grid
count.

DIAGONAL APPROXIMATE-FACTORIZATION ALGORITHM 351

An important aspect of the block-tridiagonal solution process is the temporary
storage requirement of the recursion algorithm. A close examination of the algorithm
reveals that a temporary storage of one block matrix per grid point is required to
complete the solution process. In two-dimensions, 16 variables per grid point would
be required; in three-dimensions 25 would be required. In some cases, this extra
temporary storage can be restrictive.

E. Diagonal Form of the Implicit Algorithm

It is quite evident that the block-tridiagonal matrix solutions constitute the major
portion of the numerical work of the standard implicit algorithm. Equations (4) are a
coupled set and thereby produce a 4 x 4 block structure for the implicit operators of
Eq. (6). If the operators are diagonalized into four scalar operators, the resulting
system would be more efficiently solved.

The Jacobian matrices, A and 8, have a set of eigenvalues and a complete distinct
set of eigenvectors. Similarity transformations (see Warming, Beam, and Hyett [9],
or Turkel [lo]) can be used to diagonalize a and 8, where

with

/It = D [U, U, U + c(G + <;)l’*, U - c(<; + r;)“‘]

i

u 0 0 0
0 u 0 0

= 0 0 u + c(@ + Q” 0
I

9 Pb)

0 0 0 u - c(<i + <y*

/i, = D[V, V, V + c(q: + q:)“‘, V - c(q: + $)“‘I,

a(u +* l;,c) Ct(U CC/)

a(v + L”C> a(v - E$) 1 7 (9c)

1 --Y-
p(l;,u-f;,v) a ___

[

92+c2+cg 1 [$P+c’- &

-- (Y- 1) (Y- 1) a (Y-1) 11

T;‘=

(y- l)c% (y- l)c-*v -(y- l)c-2

&J-’ -E*p-’
/Kc - (Y - IhI PF c- (Y- l)vl
-PKc + (Y - lb1 -N&c f (Y - lb1

(94
and (x = p/(fic), /? = l/(&c), 8= I?~ u + &v, and, for example, LX =
k,/(k; + k;)“*. Relations exist between T, and T,, of the form

N= T;‘T,,, N-l= TilTt, (104

352

where

PULLIAM AND CHAUSSEE

i

1 0 0 0

A= O ml -pm, w2
0 pm2 ~~(1 + ml> ~‘(1 -ml> ’
0 -pm, ~‘(1 -ml> ~~(1 + ml> I

(lob) 1 1 0 0 0
A-l= 0 ml pm2 -pm2

0 --pm, ~‘(1 +m,) ~‘(1 -m,) ’
0 pm, ~‘(1 -ml> ~‘(1 + 4) I

with m, = (&ii, + &rj,,), m, = (fXXr; - &ii,), and ,u = l/&. Note that A and Z?’
are independent of the flow variables.

After applying the identities, Eqs. (9) in Eqs. (6), we have the diagonal form

[(T,T,-‘)“+h~,(T,~,T,-‘)“][(T,T,-’)”+~B,(T,~,T,-‘)“]A~“=~”, (11)

where the identities T, T; ’ = I and T,, T; ’ = I are used.
A modified form of Eq. (11) is constructed by moving T, and T,, outside of the

difference operators 6, and 6,, respectively. This results in the “diagonal” form of the
algorithm

(12)

Since T, and T,, are functions of < and r, the modification has introduced an error;
the error will be examined in Section 3. Equation (12) can be simplified by using the
relations of Eqs. (10) to produce

Tf(Z + h&d;) N(I + hd,&)(T,- l)” A$ = It”. (13)

The new implicit operators, (1+ hS,R,) and (Z + h8,/i,), are still block-
tridiagonal, but now the blocks are diagonal in form so that the operators reduce to
four independent scalar tridiagonal operators. This has a large positive effect on the
solution process discussed below.

Similar reductions of the block operators have been introduced previously by
Steger [111 (for the conservative law form) and Briley and McDonald [121 (for the
nonconservative form). In these cases the authors point out that the basic structure of
the “Cartesian form” of the block Jacobian matrices can be rearranged such that the
block implicit operators reduce to a series of scalar operators and one smaller ranked
block operator. For instance, in two dimensions, one obtains two scalar tridiagonal
operators and a 2 x 2 block implicit operator. Unfortunately, the general curvilinear
transformations destroy the reducible structure of the equations. The diagonal
algorithm is not so affected by the transformations.

Yanenko and Kovenja [131 have also introduced algorithms which are constructed
with scalar sweeps. In this case the physical processes are split, where the convective

DIAGONAL APPROXIMATE-FACTORIZATION ALGORITHM 353

terms give scalar implicit operators and the pressure terms give a block implicit
operator.

The solution process for the implicit part of Eq. (13) consists of: (1) S, =
(T; ‘)“Z?‘, a matrix-vector multiply at each grid point, since T; ’ is known
analytically; (2) [I + hS,d;) S, = S, , solution of four scalar tridiagonal equations;
(3) S, = fi-‘S,, a matrix-vector multiply at each point; (4) [Z + hS,,*111]S4 = S,,
four more scalar tridiagonal equations; (5) A$ = CS,, another set of matrix-vector
multiplies, and (6) q ++* = 8” + Aq^” to update the solution. This contrasts with the
two block-tridiagonal matrix solutions required in Eq. (6).

An operation count for the diagonal form of the implicit algorithm yields 233
multiplies, 125 adds, and 26 divides, or 384 operations. This is a significant reduction
from the 746 operations required for the standard algorithm. The net effect is a
reduction in the total computing costs for the solution of the Euler equations with an
implicit numerical algorithm.

F. Three-Dimensional Algorithm

The three-dimensional Euler equations in generalized coordinates are

where

P
i= J-’ ;I:

I. PW
e

a,cj+a,B+a,P+a,&o

) E=J

pU‘
NJ+ LP

I I 1 PVU-+ &P , E=.i
PWU + t, P

(e+P>U-t,p

PW
puW+ LP

G= J-’ [1 PvW+CyP 3
ww+ LP

(e+P)W-C,p

(144

PV
Puv+ rlxP

1 i I PVVfrlyP 3
pwv+ I;fyP

(e+p)V-vtp

(14b)

The metric terms are

354 PULLIAM AND CHAUSSEE

and

J-’ =x3y,,z3 +xs~g,, +x,Y~z~-x~Y~, -x,,yszs -xsy,,zl.

The standard implicit algorithm is described in detail in [141 and is written as

(I + hd,.d”)(l+ hS,,s”)(I + h6,e”)dsj = -h(S,6” + S,P” + cY,e”) = Z?‘. (16a)

with

A,B,ore=

kt kc 4
k,$2 - uf3 k, + B - k,(y - 2)~ k,u - (y- l)k,u
k,,#’ - 00 k,u - k,(y- 1)~ k,+e-k,(y-2)u
k,qi’ - we k,w - k,(y- 1)~ k, w - k,(y - 2)~

fW#’ - r@/~)l b%b4e/d - 4’1 W,Wd - 0’1
-(Y- 1)N -(Y--l)q

k 0

&u-b- l)k,w W- 1)
kv-(y- l)k,w k,(y- 1)

k,+e-k,(y-2)w k,(y- 1)
WAWd - 4’1 k, + Ye
-(Y- l)w&

where 9’ = OS(y - l)(u’ + v2 + w*), 0 = k,u + k,v + k, w, and, for example, to
obtain A^, k = t.

The similarity transformations for the Jacobian matrices A, 8, and e are

A = T,ri,T;‘, B = T,/i, T;‘, C = T&T,-‘, W)

where

A, = D[U, U, U, U + c(<: + <; + t:)1’2, u - ~(4; + (; + {;)“‘],

2, = D[F’, V, K V + c(q: + q-; + q;)“‘, v - c(rj: + rj; + t,f)“2], Cl-)

A, = D[W, W, W, W + c(C: + t; + t;f)“‘, W - c([; + [; + r;)“‘].

DIAGONAL APPROXIMATE-FACTORIZATION ALGORITHM 355

with

Tk =

and

1 [I;, (‘-$I,)
-p-‘(Ezv - Eyw) 1

[5 (l-f)

a(24 -&c)
a(v - E c)
ah- J) E

a

1

t;,(y - 1) UC-2
[
k,P-’

+ &(y - 1) vc-2
I

M;P- l E&J - 1) vc-2

7’;’ = -p-‘(/Fxw - ~$> 1 +fcy(y- ‘)uc-21
[K (1 -f) F$’ L-&P-’

-p-‘(Eyu - E$) 1 + t;,<y - 1) UC-‘] + t;,(Y - 1) vc-‘1
B@’ - 4 /Kc-(Y- ‘Nl P(d2 + 4 PW c-(Y- ‘Iv1

-P[f;,c+(Y+ lhl -Pv$+(Y- l)ul

[--f;,p-’ + EJy - 1) wc-2] -EJy - 1) cCi

[f;,p-’ + lqy - 1) WC-21 -r;,<, - 1) c-2

f;,(y - 1) WC-2 -Ez(y - 1) c-2

mc- (Y- ‘)wl P(Y - ‘1

-P[r;zc + (Y - l)wl P(r - 1)

, (‘7d)

where 8= KXu + f;y v + l?* w and, for example, LX = k,..(k: + kz + kz)‘12, etc.

356 PULLIAM AND CHAUSSEE

Following the same procedure as in the two-dimensional development, that is,
inserting the identities Eqs. (17) into Eqs. (16) and moving the matrices T, outside
the spatial difference operators, we obtain the diagonal form

q(Z + hc@;) fi(Z + h&/i;) &Z + h&li;)(T;‘)“dq^” = l?‘,

with N= Tt-‘Tn, A-‘= T;‘Ts, P= T;‘Tg, P-‘= T;‘T,,, where

UW

m3 -pm, pm4
m4 1111123 -w3
m, -Pm2 ,um2

--pm, pm2 ~‘(1 + ml> ~~(1 -ml>
--pm, ~‘(1 - 4) iu2(l + 4) I

The three-dimensional diagonal algorithm requires 448 multiplies, 265 adds, and
41 divides, a total of 754 operations. The standard algorithm requires 128 1
multiplies, 1061 adds, and 18 divides, a total of 2360 operations.

3. ACCURACY AND STABILITY

A. Steady-State Accuracy

The spatial accuracy of the standard and diagonalized algorithm for steady-state
problems (i.e., where A$ goes to zero) is determined by the type of differencing used
in forming &‘, the steady-state equation. Since the modification that produces the
diagonal algorithm does not affect H”, both schemes will have the same steady-state
solution (if we assume that the steady-state solution is independent of the
convergence path, i.e., that the steady state is unique).

B. Stability

One of the advantages of using the diagonal algorithm over the standard algorithm
is that steady-state solutions, with the same accuracy as for the standard algorithm,
can be obtained with less computational effort and cost. The question then arises as
to the stability of the diagonal algorithm. Warming and Beam [151 have presented
the linear stability analysis for the standard scheme when applied to constant coef-
ficient partial differential equations. Their analysis shows unconditional stability, but
in actual practice for nonlinear problems with nonperiodic boundary conditions,
stability bounds have been encountered (although much less stringent ones than the
explicit stability bounds). For a particular problem, one must rely on numerical
experimentation to determine the actual stability bounds. In fact, linear stability
analysis for the three-dimensional delta form of the approximate factorization

DIAGONAL APPROXIMATE-FACTORIZATION ALGORITHM 357

algorithm shows unconditional instability. The instability, though, is a weak one and
can be controlled by numerical dissipation.

For constant coefficient matrices a and I?, the diagonal algorithm reduces to the
standard algorithm because the eigenvector matrices are also constant. Therefore, the
linear stability analysis of Warming and Beam [151 also holds for the diagonal
algorithm. Numerical experiments have shown identical stability characteristics for
the two algorithms. Convergence rates are unaffected and time-step limitations are the
same for both schemes.

C. Time Accuracy

For simplicity, the unsteady characteristics of the diagonal algorithm can be
investigated by examining the algorithm applied to the one-dimensional fluid dynamic
equations. The one-dimensional equations are

a,q + a,E= 0, VW

where

q= [e]. ‘=[(gy. (19b)

(2W

The standard solution algorithm for Eqs. (19) is

(Z + h&A”) dQ = -h&En = @

with

Aq= (q”+l -qn), h=At,

and

A”= g n-

0 [

0

aq -
(y - &,2 -(y !3)u y - 1 . (20b)

bWd + (Y - WI Meld - (3/2)(~ - WI YU 1
Equations (20) are first-order accurate in time, when the first-order Euler implicit

scheme

Aq= (q”+’ - 4”) = -h&q”+ ’ + o(h2)

and the second-order local time linearization of the flux vector

E -“+1=~+A”(qn+1-gn)+o(h2)

are used.

(21)

(22)

358 PULLIAM AND CHAUSSEE

The diagonalized form of Eqs. (20) are

X(1 + hSJ,“)(X- ‘)“Acj = i?,

where

Pa)

G-1

and

I
1-$- 1)c-2 (y- 1) UC-* -(y- 1)c-2 \

x-‘= p (y-l);-uc
[1 Bb-(Y- lb1 B(Y- 1) *

P [(Y- l):+uc] -P[c+b- I)ul 13(Y - 1) 1
First we note that although Eqs. (20) are in conservation-law form, Eqs. (23) are

not, due to the variable coefficient X in front of the derivative 6,. This nonconser-
vative form is only for the unsteady part of the equations, whereas the steady-state
equations (which are unaffected by the diagonalization) remain in conservation-law
form. The nonconservative nature of Eqs. (23) for unsteady calculation has been
demonstrated numerically for a one-dimensional shock tube problem (Section 5).

The effect of the diagonalization on the time accuracy can be examined by
subtracting Eqs. (23) from Eqs. (20), which produces

r = hd,[X”/1~(X-‘)“AF] - hPG,[A~(x-‘)” Aq”], (24)

where the similarity transformation A = XA,X-’ is used to replace A in Eqs. (20).
Chain rule for discrete differences is used on the first term of Eq. (24) giving

R = h&.(X”)AI;(X-‘)“A@ + hX”d,[A;(X-‘)“A4”]

- hX’Y@;(X-‘)” Ap”] + O(h 44” Ax”) (25)

= h&(X”) A; (X- ‘)n A@ + O(h A@ Axp),

where the chain rule produces an O(Axp) error depending on the order (p) of the
difference operator 6,.

DIAGONAL APPROXIMATE-FACTORIZATION ALGORITHM 359

Now, by Eq. (2 l), A? is O(h) so that

r = 0(/I*) + O(h2 AXP) = 0(/l*). (26)

Therefore, the error introduced by the diagonalization is first order in time.

4. APPLICATION TO VECTOR PROCESSORS

One important feature of the diagonal algorithm is the reduction in temporary
storage needed to complete the implicit integrations. As noted in Section 2, for two-
dimensional calculations a 4 x 4 matrix is needed at each point, a 5 x 5 matrix in
three dimensions. Each of the implicit operators in the standard algorithm is one
dimensional and, on conventional machines, where each variable is a point function,
the temporary storage requirement would be 16 times the maximum number of grid
points for any direction. On vector machines, the variables are vectors, and the
storage requirement is multiplied by the vector length. The Illiac IV computer and the
Cray 1 have vector lengths of 64; for the STAR lOOC, long vectors of the order of
500 are required. Therefore, the temporary storage requirements quickly swamp the
memory of the vector machines for any reasonable grid sizes.

The diagonal algorithm reduces the above requirements by 15/16 for 2-D and by
24/25 for 3-D, since the operators are scalar, not block, tridiagonals. This reduction
makes the application of implicit solvers, on vector machines, more reasonable.

5. RESULTS

Numerical experiments have been performed comparing the standard implicit
algorithm with the diagonal form of the algorithm. In all cases, the two algorithms
compare quite well for convergence, steady-state spatial accuracy, and numerical
stability.

In Fig. 1, results of a one-dimensional shock tube calculation are shown for both

- ANALYTIC

D DIAGONAL IMPLICIT
1.0

n STANDARD IMPLICIT

.8 T=l.Orec

.6
P

.4

FIG. 1. Unsteady shock tube results.

360 PULLIAM AND CHAUSSEE

-.6

.4 NACA 0012 INVISCID

M, = 0.8 01= 2”

.6 - STANDARD IMPLICIT

V UPPER

A LOWER I
DIAGONAL IMPLICll

FIG, 2. Comparison for NACA 0012.

the standard and diagonal algorithm. Initially, a density ratio of 5 exists between two
chambers separated by a diaphragm. After the diaphragm is removed, an expansion
wave moves to the left and a contact surface and shock move to the right. As seen in
Fig. 1, both methods predict the correct expansion, contact surface, and shock jumps.
But in the case of the diagonalized algorithm, the shock speed is off by 5%, which is
indicative of a nonconservative scheme. The scheme does predict the overall features
of the flow field correctly and, therefore, seems to be applicable to unsteady flows
without shocks.

A two-dimensional implicit airfoil code [6] was modified to the diagonal form and
used to compare the two schemes. Geometry, application of boundary conditions,
spatial accuracy, and approximations are discussed in detail in [6]. Computed
pressure coefficients are shown in Figs. 2 and 3 for two airfoils at Mach number,
M, = 0.8, and angle of attack, a = 2”. The first (Fig. 2) is for a NACA 0012 airfoil
and the second (Fig. 3) for a NACA 64A410. In both cases, the solutions are fully
converged and compare exactly with the solutions obtained with the standard
algorithm. The convergence history for the second airfoil, the NACA 64A410, is
shown in Fig. 4. The figure shows the total residual, which is the sum of the square of
the residuals over all the grid points, plotted against the number of times steps N. A
slight perturbation in the time step was introduced at N= 300. The convergence of
both schemes is almost identical even after the perturbation. This confirms that the
transient part of the solution is being computed by the diagonal algorithm and that it
is consistent with that of the standard algorithm. In the airfoil calculations an initial

DIAGONAL APPROXIMATE-FACTORIZATION ALGORITHM 361

NACA 64A410

M,=0.8 u=2‘

- STANDARD IMPLICIT

v UPPER

A LOWER
DIAGONAL IMPLICI‘I

FIG. 3. Comparison for NACA 64A410.

free stream condition was used and the solutions developed to the final results. Even
though the motion of the shock as it develops may be incorrect, due to the nonconser-
vative nature of the implicit part of the diagonal algorithm, the final converged
position is determined by the steady-state finite-difference equations which are iden-
tical for the diagonal and standard algorithms. The residual shown is not sensitive to
the shock position since it is a global quantity. In any event, the development of the
solution from arbitrary initial conditions will be almost identical for the two
algorithms since the finite-difference equations are really not that much different from
each other. Also, in all cases examined, there was no change in the stability charac-
teristics when the diagonal form was used.

Computation times for the cases that were run on a CDC 7600 computer are
shown in Table 1. Cases 1 and 2 are the two airfoil solutions; they have a consistent
savings of over 30% in CPU time. Also included is the computation time for a two-
dimensional inlet calculation [16], which shows a 34% saving in CPU time. The
difference from the airfoil calculations is due to other changes in the code, such as
boundary conditions, geometry, and output.

581/39/2-8

362 PULLIAM AND CHAUSSEE

TABLE 1

Run-Time Comparisons

Case
No. Body N

Computer time (set)

Standard Diagonal

Saving in
CPU time

6)

1 NACA 0012
2 NACA 64A410
3 2-D Inlet

1 Prop-fan
2 Hemi-cyl.

Two-Dimensional Calculation

1200 855.1
1200 992.1
200 174.7

Three-Dimensional Calculation

50 347.8
50 345.0

580.5 32
673.1 32
115.0 34

266.0 24
245.4 29

NACA 64A410

PII,= 0.8 a= 2"
INVISCID

- STANDARD IMPLICIT

FIG. 4. Residual for NACA 64A410 computation.

DIAGONAL APPROXIMATE-FACTORIZATION ALGORITHM 363

Finally, preliminary calculations have been made using the three-dimensional form
of the diagonalization. Here the three-dimensional code of Pulliam and Steger [141
was modified and applied to flow through a prop-fan configuration that has curved-
twisted propeller blades, and to a hemisphere-cylinder configuration. Details of the
hemisphere<ylinder calculations can be found in [141. Results of the prop-fan
calculations are as yet unpublished. Computation times for 50 time steps are shown
in Table 1. These savings are less than what might be expected from the operation
counts due to the fact that the three-dimensional program on the CDC 7600 is Z/O
(input/output) bound. Also, the three-dimensional flow field program has a lot of
overhead computation for boundary conditions, metric calculations, and geometry,
which lessen the relative savings from a change in the algorithm.

6. SUMMARY

A diagonal form of an approximate-factorization implicit finite-difference
algorithm has been developed. It is more efficient than the standard form yet retains
many of the original accuracy and stability characteristics of the standard form. The
algorithm has been applied to the Euler equations in Cartesian and general
curvilinear coordinates. Results show computer time savings of up to 34% for
realistic calculations. The new algorithm has an effect on the development of implicit
schemes for vector computers since it reduces the temporary storage requirements of
the implicit solution process.

REFERENCES

1. R. M. BEAM AND R. F. WARMING, AZAA .I. 16 (1978), 393.
2. A. LAPIDUS, J. Comput. Phys. 2 (196?), 154.
3. H. VIVIAND, Recherche Aerospatiale 1 (1974), 65.
4. M. VINOKIJR, J. Comput. Phys. 14 (1974), 105.
5. R. M. BEAM AND R. F. WARMING, J. Comput. Phys. 22 (1976), 87.
6. .I. L. STEGER, AZAA J. 16 (1978), 679.
7. J. L. STEGER AND P. KUTLER, “Implicit Finite-Difference Procedures for the Computation of Vortex

Wakes,” AIAA Paper 76-385, Albuquerque, N.M., 1976.
8. E. ISAACSON AND H. B. KELLER, “Analysis of Numberical Methods,” p. 58, Wiley, New

York/London/Sydney, 1969.
9. R. F. WARMING, R. M. BEAM, AND B. J. HYE-IT, Math. Comp. 29 (1975), 1037.

10. E. TURKEL, Math. Comp. 27 (1973), 729.
11. J. L. STEGER, Comput. Methods Appl. Mech. Engrg. 13 (1978), 185.
12. W. R. BRILEY AND H. MCDONALD, J. Comput. Phys. 24 (1977), 372.
13. N. N. YANENKO AND V. M. KOVENJA, Soviet Math. Dokl. 18 (1977), 260.
14. T. H. PULLIAM AND J. L. STEGER, AZAA J. 18 (1980), 159.
15. R. F. WARMING AND R. M. BEAM, SIAM-AiUS Proc. 11 (1977).
16. D. S. CHAUSSEE AND T. H. PULLIAM, “A Diagonal Form of an Implicit Approximate-Factorization

Algorithm as Applied to the Calculation of the Inviscid and Viscous Supersonic Flow Fields of
Two-Dimensional Inlets,” AIAA Paper 80-67, Pasadena, Calif., Jan. 1980.

